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a b s t r a c t 

Genome-wide association analysis (GWAS) is a commonly used method to detect the potential biomark- 

ers of Alzheimer’s disease (AD). Most existing GWAS methods entail a high computational cost, disregard 

correlations among imaging data and correlations among genetic data, and ignore various associations be- 

tween longitudinal imaging and genetic data. A novel GWAS method was proposed to identify potential 

AD biomarkers and address these problems. A network based on a gated recurrent unit was applied with- 

out imputing incomplete longitudinal imaging data to integrate the longitudinal data of variable lengths 

and extract an image representation. In this study, a modified diet network that can considerably re- 

duce the number of parameters in the genetic network was proposed to perform GWAS between image 

representation and genetic data. Genetic representation can be extracted in this way. A link between ge- 

netic representation and AD was established to detect potential AD biomarkers. The proposed method 

was tested on a set of simulated data and a real AD dataset. Results of the simulated data showed that 

the proposed method can accurately detect relevant biomarkers. Moreover, the results of real AD dataset 

showed that the proposed method can detect some new risk-related genes of AD. Based on previous re- 

ports, no research has incorporated a deep-learning model into a GWAS framework to investigate the 

potential information on super-high-dimensional genetic data and longitudinal imaging data and create 

a link between imaging genetics and AD for detecting potential AD biomarkers. Therefore, the proposed 

method may provide new insights into the underlying pathological mechanism of AD. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

As a common neurodegenerative disease, Alzheimer’s dis- 

ase (AD), which is characterised by memory loss, cognitive 

mpairment, and personality changes, often appears in people 

ged > 65 years ( Assoc, 2018 ). Although no effective cure for 

D has been developed, studies have demonstrated that the early 

etection of AD may improve its treatment and slow down its 

rogression ( Huang et al., 2019c ). Therefore, AD-related potential 

iomarkers should be detected. The risk of AD is affected by ge- 

etic variants an individual carries, and it can be measured ac- 
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urately from birth ( Lambert et al., 2013 ). Hence, detecting AD- 

ssociated genetic biomarkers may uncover the possible biological 

echanisms and lead to early prediction and diagnosis of AD. 

Genome-wide association analysis (GWAS) can be applied to 

etect the potential biomarkers of diseases by combining multiple 

henotypic variables and whole genomes. Therefore, disease sta- 

us (i.e., diagnostic labels, such as AD and normal control [NC] in 

his study) can be used as phenotype to detect disease-related ge- 

etic biomarkers for biological interpretation of the disease. How- 

ver, genetic data do not explicitly encode disease status, which 

ndicates that directly associating genetic data with disease sta- 

us might lead to inaccurate or incorrect results ( Bi et al., 2017 ).

oreover, brain imaging data, such as MRI, can contribute to the 

nderstanding of AD-related neural changes ( Huang et al., 2019a ; 

uang et al., 2019c ; Ning et al., 2018 ; Zhuo et al., 2018 ). Hence,

maging data can be used as endophenotypes in GWAS to anal- 
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Fig. 1. Genome-wide association analysis has a greater detection power when longitudinal data are used. (a) and (b) are two examples of time-dependent patterns of the 

effect of SNPs on the phenotype, which are difficult to detect using the data from a single time point. 
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se the associations between imaging and genetic data and bridge 

he gap between genetic data and disease. To date, GWAS has been 

sed to detect the potential biomarkers of diseases by analysing 

he associations between imaging and genetic data (e.g., single nu- 

leotide polymorphism [SNP]) ( Huang et al., 2017 ; Huang et al., 

019a ; Huang et al., 2015 ; Huang et al., 2019b ). In contrast to

ethods involving candidate phenotypes or genotypes, GWAS does 

ot require prior knowledge of disease pathology to select can- 

idate phenotypes and genotypes; consequently, GWAS can re- 

uce the probability of missing important genes and brain clusters 

 Huang et al., 2015 ). However, several problems in GWAS should be 

onsidered. 

First, running GWAS poses remarkable computational chal- 

enges because it usually runs genome-wide associations ( N G ∼
0 6 known variants) with signals at tens (prespecified regions) or 

illions (voxels) of locations in the brain ( Huang et al., 2017 ; 

uang et al., 2019a ; Huang et al., 2015 ; Huang et al., 2019c ). Con-

equently, traditional GWAS methods prefer to model imaging data 

s a linear function of genetic data to reduce computational costs. 

owever, the relationship between imaging and genetic data is so 

omplex, in which formulating it via a simple linear function is 

ifficult ( Hu et al., 2019 ; Zhou et al., 2019a ). Thus, using a non-

inear function to describe the relationship between imaging and 

enetic data may improve the detection accuracy of AD biomark- 

rs in GWAS. 

Second, traditional GWAS is performed using single-locus mod- 

ls (i.e., independent testing of the association between each 

NP and a given phenotype) ( Guo et al., 2019 ). However, com- 

lex traits are often collectively controlled by multiple SNPs 

 Dudbridge, 2016 ; Li et al., 2015 ). Therefore, apart from the associ-

tion between imaging and genetic data, correlations among imag- 

ng data and correlations among genetic data should be consid- 

red. Multivariate sparse regression methods have been introduced 

o achieve this goal. These regression methods regress either a set 

f SNPs for a few candidate phenotypes or a set of phenotypes for 

 few candidate SNPs; thus, the relationship among phenotypes or 

NPs is considered via regularization ( Zhou et al., 2019a ; Zhu et al.,

017 ; Zhu et al., 2018 ). However, these methods are usually per- 

ormed on a small set of SNP data (~10 3 ) because of complex cal-

ulation. 

Third, traditional GWAS methods involve the use of phenotypes 

imaging data in this study) from a single time point (e.g., baseline 

isit). Therefore, various associations between genetic and imag- 

ng data may be missed, and the power of biomarker detection 

or GWAS decreases ( Marchetti-Bowick et al., 2016a ). Fig. 1 illus- 

rates two hypothetical patterns of the effect of SNP on the pheno- 

ypes. An association between a phenotype and an SNP may exist 

f the three SNP genotypes (denoted as AA, Aa, and aa) have dif- 

erential effects on the phenotype in traditional GWAS. In the first 
2 
ase ( Fig. 1 -a-), the effects of the three SNP genotypes only differ

n t ∈ [ T 3 , T 5 ] time interval. If a single time point is arbitrarily se-

ected, then the effective association may be missed, whereas this 

ssociation may be detected using longitudinal data that consider 

ata from varied time points. In the second case ( Fig. 1 b), the dif-

erence between the effects of the three genotypes in an SNP is 

mall but consistent over time; the effects may be too weak to be 

nterpreted as a remarkable association by using data from a sin- 

le time point. However, this weak signal may strengthen once the 

ata from the entire time series are considered. In particular, AD is 

 progressive neurodegenerative disease. The brain structure, brain 

unction, and disease diagnosis change over time. For example, a 

C subject may progress to mild cognitive impairment (MCI) and 

o AD several years later. On the contrary, some patients with MCI 

an never progress to AD or revert to NC. Thus, longitudinal imag- 

ng data should be considered to discover the effect of genetic data 

n the trajectory of disease progression and enhance the detection 

ower of potential biomarkers. 

Fourth, existing GWAS methods directly involve the use of 

maging data as endophenotypes to identify endophenotype- 

ssociated genetic biomarkers; this step further requires to con- 

rm or refute a suggestive link based on imaging endopheno- 

ypes because the identified genetic biomarkers may or may not 

e associated with the disease (e.g., AD in this study) ( Xu et al.,

017 ). Therefore, a direct link between genetic data and AD should 

e constructed to improve the accuracy of detecting AD potential 

iomarkers. 

Deep-learning methods have been widely proposed to detect 

otentially useful information and achieve interesting results in 

D-related research, such as the prediction and classification of 

D ( Ghazi et al., 2019 ; Lee et al., 2019 ; Lin et al., 2018 ; Lu et al.,

018 ; Ning et al., 2018 ). On the one hand, deep-learning meth- 

ds bridge inputs and outputs with nonlinear mapping to approx- 

mate a highly accurate and complex relationship between inputs 

nd outputs. On the other hand, correlations among inputs are ex- 

mined through inner product and nonlinear mapping via deep- 

earning methods. Therefore, deep-learning methods can be incor- 

orated into a GWAS framework to accurately model the following 

elationships: among imaging data, among genetic data, and be- 

ween imaging and genetic data. Li et al. proposed a deep canoni- 

ally correlated sparse autoencoder to analyse the associations be- 

ween brain imaging and genetic data ( Li et al., 2020 ). This method 

rst combined deep canonical correlation analysis and sparse au- 

oencoder for extraction of imaging and genetic features, which 

an maximize the canonical correlation between the two extracted 

eatures while minimizing the reconstruction errors of the sparse 

utoencoder. Then, a classifier, such as a support vector machine 

SVM), was applied on the extracted features to classify patients 

ith schizophrenia and healthy controls ( Li et al., 2020 ). Although 
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ood classification performance is achieved by using the method 

roposed in Li et al. (2020 ), the feature extraction and classifica- 

ion steps are separated, whose extracted genetic features are more 

elated to imaging features than the disease. Therefore, the biolog- 

cal interpretation of this method related to the disease is unex- 

loited ( Li et al., 2020 ). Recently, Hu et al. proposed a Grad-CAM-

uided convolutional collaborative learning to analyse the associa- 

ions between brain imaging and genetic data and to perform auto- 

ated diagnosis in a whole network ( Hu et al., 2021 ). The results

an be well interpreted by using this method because the imag- 

ng and genetic data are related to the disease status ( Hu et al.,

021 ). However, this method is performed on a small set of prese- 

ected SNP data (only 750 SNPs were used), which may miss some 

isease-related SNPs. Moreover, the methods proposed in Hu et al. 

2021 ) and Li et al. (2020 ) are performed on imaging data from a

ingle time point; thus, the effect of genetic data on the trajectory 

f disease progression contained in the longitudinal imaging data 

ay be lost. 

Although existing deep-learning-based imaging genetic stud- 

es can be applied to model the complex associations between 

maging and genetic data, the computational challenges imposed 

y super-high-dimensional genetic data and the information loss 

aused by using imaging data from a single time point remain 

nsolved. With regard to computational challenges, if a fully con- 

ected layer with 100 hidden units is used after the input layer, 

hen approximately 10 8 (number of SNPs × number of hidden 

nits in the fully connected layer: ∼ 10 6 × 100 ≈ 10 8 ) network pa- 

ameters exist, and the number of parameters increases consider- 

bly as the number of fully connected layers increases. In addition 

o the high dimensionality of SNP data, sequence–context informa- 

ion is unavailable in SNP (values with 0, 1, or 2), and convolutional 

etworks are unsuitable for SNP data in reducing the number of 

arameters. The goals are as follows: to introduce a modified diet 

etwork ( Romero et al., 2017 ), reduce the number of network pa- 

ameters, accelerate GWAS calculation, and address this problem. 

oreover, a gated recurrent unit (GRU) is applied to integrate lon- 

itudinal imaging data and discover various associations between 

enetic and imaging data. 

In this study, a novel GWAS method, namely, deep GRU and diet 

etwork-based GWAS (dGDN-GWAS), is proposed to detect poten- 

ial AD genetic biomarkers. Our contributions are as follows. First, 

 novel deep-learning framework is incorporated into the GWAS 

ethod to construct a nonlinear relationship between imaging and 

enetic data and consider the correlations among imaging data and 

orrelations among genetic data. Second, a modified diet network 

s applied to reduce the number of parameters in the genetic net- 

ork and effectively perform GWAS. Third, considering the variable 

engths of the longitudinal imaging data, GRU is used to integrate 

hese data and determine various associations between genetic and 

maging data. Lastly, the proposed method provides a novel way to 

nvestigate the association between imaging and genetic data while 

reating a link between imaging genetics and AD. To validate our 

ethod, a set of experiments are performed on the simulated data 

nd a real AD dataset. For the experiments of simulated data, the 

esults show that the proposed method can accurately detect rel- 

vant biomarkers and achieve high classification accuracy. For the 

xperiments of the real AD dataset, 708 subjects are included, each 

ubject has 501,584 SNPs and a set of longitudinal imaging data. 

he AD/NC classification accuracy of the 501,584 SNPs using the 

roposed method is 0.709, which is comparable to that of some 

elevant methods with SNPs to classify subjects into AD and NC. 

oreover, some previously reported AD-associated genes and some 

ovel AD-related risk genes are detected by using the proposed 

ethod. Based on previous studies, no research has incorporated a 

eep-learning model into the GWAS framework to investigate the 

otential information in super-high-dimensional genetic and longi- 
3 
udinal imaging data and establish a link between imaging genetics 

nd AD for the detection of potential AD biomarkers. Therefore, the 

roposed method may provide insights into the underlying patho- 

ogical mechanism of AD. 

. Methods 

.1. Overview of the proposed method 

A novel dGDN-GWAS method was proposed for potential AD 

iomarker detection. Fig. 2 presents an overview of the proposed 

GDN-GWAS method that primarily consists of three steps. In the 

rst step, the potentially integrated information of the longitudi- 

al imaging data for image representation was extracted by us- 

ng a GRU-based network ( Fig. 2 a). Apparently, the original imag- 

ng measurements might not be enough to characterise the disease 

ell, such as region of interests (ROIs) and image voxels, although 

he imaging measurements were more informative with regard to 

he disease than genetic data. Therefore, image representations, 

hich contained rich information of longitudinal imaging data and 

isease status, were extracted using a GRU-based classification net- 

ork. In the second step, the modified diet network was used to 

xtract the potential genetic information and examine the associ- 

tion between the imaging and genetic data ( Fig. 2 b). Using this 

tep, the extracted genetic representations were closely related to 

he image representations, which indicated that the gap between 

enetic and imaging data was shortened. However, the gap be- 

ween the genetic representations and AD was still observed, and 

 direct association analysis between them was required in bridg- 

ng the gap and detecting AD-related biomarkers. Therefore, in the 

hird step, a link between imaging genetics and AD for potential 

D biomarker detection was established ( Fig. 2 c). 

.2. Mathematical formulation 

n independent subjects were considered, and each subject was 

ssociated with a set of imaging data and genetic markers. R is the 

hole-brain region that contains N R image features; r is the image 

eature in R ( r ∈ R ); G is the set of genetic loci containing N G SNPs,

nd g is the locus in G ( g ∈ G ). For each individual i ( i = 1 , . . . , n ) ,

he following parameters were considered: an N G × 1 vector of ge- 

etic data denoted by X i = { x i (g) } i =1 , ... ,n and an N R × 1 vector of 

mage measurement denoted by Y it = { y it (r) } 
i =1 , ... ,n ;t=1 , ... ,N i 

T 
, where 

 

i 
T 

is the number of time points for the i th subject. The main no- 

ations used in this study are listed in Table 1 . 

.3. Integration of longitudinal imaging data with GRU 

A recurrent neural network (RNN) was composed of multiple 

ecurring processing layers to obtain a representation of sequen- 

ial data ( LeCun et al., 2015 ), and variable lengths of time-series 

ata can be processed using the RNN ( Lee et al., 2019 ). Given the

ariable number of time points for different subjects in this study, 

his advantage was valuable in longitudinal data processing. GRU, 

 widely used type of RNN, was introduced to allow each recur- 

ent unit to adaptively capture the dependencies of different time 

cales; it can also be used in gradient vanishing found in the RNN 

 Cho et al., 2014 ). Therefore, GRU was applied to integrate the lon- 

itudinal imaging data in this study. 

Integrating the longitudinal imaging data for image representa- 

ion was illustrated by using GRU. GRU had reset and update gates 

o modulate the flow of information inside the unit. The param- 

ters of these two gates were studied to determine how Y t was 

rocessed (Eqs. (1) –(4) ). The update gate z t was computed using 

q. (1) , which determined the amount of information from the pre- 

ious hidden state s t that was carried over to the current hidden 
-1 
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Fig. 2. Overview of the proposed dGDN-GWAS method, where the symbol “p × q ” next to the layer represents the output size of the layer, and “FC” denotes the fully 

connected layer. (a) The potentially integrated information of the longitudinal imaging data is extracted for image representation by using the GRU-based network, where 

the dashed black arrows within the GRU layer represents abbreviatory GRU cells. (b) The modified diet network is used to extract the potential genetic information and 

examine the association between imaging and genetic data, in which two strategies are used to analyse the association between imaging and genetic data. (c) A link 

between imaging genetics and AD is established for potential AD biomarker detection. The red arrows, blocks, and circles indicate the path of partial derivatives and the 

potential AD-related imaging and genetic biomarkers, respectively. 

Table 1 

Main notations used in this study. 

Symbol Size Description Symbol Size Description 

X i N G × 1 Genetic data with N G 
loci for the i th subject 

x (g) n × 1 The g th locus for n 

subjects 

Y it N R × 1 Imaging data with N R 
image features in the t th 

time point for the i th 

subject 

y t (r) n × 1 The r th image feature at 

the t th time point for n 

subjects 

c(g) / 

c(r) 
– Contribution score of the 

g th locus/the r th image 

feature 

c( g, r ) N G × N R Association score 

between the g th SNP 

and r th ROI 

H R 
j 
/ 

H G 
j 
/ 

H A 
j 
/ 

H C 
j 

K j × 1 Outputs of the j th layer 

for the GRU-based 

network/the 

main/auxiliary networks 

of the modified diet 

network/the network 

that links the imaging 

genetics and the 

diagnostic results of AD 

h j (r) / 

h j (g) 
K j × 1 The derivatives of units 

in the j th layer of the 

GRU-based network/ the 

modified diet network 

with respect to the 

inputs 

f R 
i 

K 3 × 1 Image representation 

obtained by using the 

GRU-based network for 

the i th subject 

f G 
i 

K 3 × 1 Genetic representation 

obtained by using the 

modified diet network 

for the i th subject 

W, U – Weights z(·) – Nonlinear mapping 

function 

K j – Unit number of the j th 

layer 

λ1 , λ2 , λ3 – Tunable coefficients 

V / M 

q × t/ 

p × 1 
Sparse matrix used to 

generate the longitudinal 

imaging/genetic data 

n q / n p – Number of nonzero 

values for the simulated 

imaging/ genetic data 

4 
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tate s t . For example, if z t was computed as 1 by using Eq. (1) , then

nly the previous information was reserved, whereas the newly 

omputed hidden value ˜ s t was disregarded (Eq. (4)). Moreover, the 

eset gate r t was computed using Eq. (2) , which determined the 

mount of information from the previous hidden state s t -1 that 

hould be forgotten. When r t was close to 0, the reset gate effec- 

ively forced the unit to act as if it is reading the first symbol of an

nput, allowing it to forget the previously computed state (Eq. (3) ). 

 t = σ ( W z Y t + U z s t−1 ) (1) 

 t = σ ( W r Y t + U r s t−1 ) (2) 

˜ 
 t = tanh ( W Y t + U ( r t � s t−1 ) ) (3) 

 t = z t s t−1 + ( 1 − z t ) ̃  s t (4) 

here � is element-wise multiplication. 

A GRU-based network was constructed to integrate the longi- 

udinal imaging data. This network consisted of four layers, where 

he first layer was a single-layer GRU with K 1 units; the follow- 

ng two hidden layers were fully connected layers with K 2 and K 3 

nits, followed by a rectified linear unit (ReLU) activation, and the 

nal layer was a sigmoid layer to calculate class-membership prob- 

bilities. Therefore, the longitudinal imaging data were fed into the 

etwork to integrate the longitudinal information and were nonlin- 

arly mapped several times to produce the diagnostic probabilities 

f AD. After the training of the network, the weights of the net- 

ork were fixed, and the output vectors of the second-last layer 

f the network were extracted to obtain the potentially integrated 

nformation of the longitudinal imaging data for image representa- 

ion F R = { f R 
i 
} ∈ R 

n ×K 3 . AD and NC subjects were used rather than

CI subjects to train this network because MCI can be regarded 

s an intermediate stage between AD and NC, and it possessed the 

haracteristics of AD and NC ( Liu et al., 2015 ). Therefore, the net-

ork trained by using AD and NC subjects can build a more ro- 

ust association with the diagnostic probabilities of AD and pro- 

ide a better guidance to the following link between imaging ge- 

etics and AD. 

.4. Association between imaging and genetic data 

Using the extracted image representations, the associations be- 

ween these image representations and genetic data were consid- 

red. However, constructing a fully connected layer to associate ge- 

etic data with image representations was difficult because of the 

imited super-high-dimensional genetic data. A modification of the 

iet network ( Romero et al., 2017 ) that can considerably reduce the 

umber of network parameters was introduced to extract the po- 

ential genetic information in the super-high-dimensional genetic 

ata, investigate the association between the imaging and genetic 

ata, and address this problem. In this section, the original diet 

etwork ( Romero et al., 2017 ) was briefly introduced, and then the 

roposed modified diet network was presented in details. 

.4.1. Diet network 

A multi-task architecture was used in the diet network ( Fig. 3 ), 

hich consisted of a classification task and a parameter prediction 

ask, to considerably reduce the parameter number during network 

raining ( Romero et al., 2017 ). The diet network indicated that a 

istributed representation for each SNP can be learned. Then, the 

apping pattern between the learned distributed representation 

nd the parameters in the classification network can be studied, 

nd the large parameters can be obtained without training in the 

lassification network. In fulfilling this idea, an auxiliary network 
5 
as introduced to predict the input layer parameters ( Fig. 3 b) 

f the classification network. In addition, another auxiliary net- 

ork was used to predict the reconstruction layer parameters of 

he classification network ( Fig. 3 c). In contrast to the classifica- 

ion network, which used raw SNP data as inputs, feature em- 

eddings were used as inputs for these two auxiliary networks. 

oreover, feature embeddings were designed as the per-class his- 

ogram of genetic data. For a given SNP, the value of each locus 

ay be 0, 1, and 2, and the per-class proportion of the three val- 

es (0/1/2) of all the subjects can be calculated to replace the three 

alues. With l classes, the feature embeddings were a matrix with 

 size of N G × 3 l by using this method. In this case, the sample 

umber of the parameter prediction network (two auxiliary net- 

orks) was N G (~10 6 ), and more samples were allowed to train 

he parameter prediction network. If the unit number of the first 

ully connected layer in the classification network was K c = 100, 

hen a fully connected layer was used in each of the auxiliary 

etwork, whose unit number was K a = 100. The parameter num- 

er between the input layer and the first fully connected layer in 

he classification network was considered, and it greatly decreased 

rom N G × K 1 ( ∼ 10 6 × 10 2 = 10 8 ) to 2 × 3 l × 10 2 ≈ 10 3 because of 

he auxiliary networks. Therefore, the super-high-dimensional SNP 

ata may be fed into the fully connected network with minimal 

emory consumption because of the interaction networks. 

.4.2. Modified diet network 

The modified diet network consisted of one main network and 

wo auxiliary networks ( Fig. 2 b). The structure of the main net- 

ork was similar to that of the GRU-based network; however, the 

rst layer of the main network was a fully connected layer with K 1 

nits. Of the two auxiliary networks, one was used to predict the 

nput layer parameters of the main network ( W e in Fig. 2 b), and

he other one was applied to predict the reconstruction layer pa- 

ameters of the main network ( W d in Fig. 2 b). The architecture of 

hese two auxiliary networks was the same, and each of these net- 

orks included two fully connected layers, where the unit number 

f the first and second layers was K 5 and K 1 , respectively. More- 

ver, each of the two fully connected layers was followed by a 

eLU activation. Similar to the original diet network ( Romero et al., 

017 ), feature embeddings, which were represented as the per- 

lass histogram of genetic data, were used as inputs for these two 

uxiliary networks. 

The similarity between image and genetic representations was 

onsidered to discover the potential information of the genetic 

ata and investigate the association between the imaging and ge- 

etic data. The SNP data can be mapped directly to the space 

f imaging representation to achieve similarity, and the objective 

unction of the modified diet network can be defined as follows: 

1 

2 n 

(
λ1 

∑ 

i =1 , ... ,n 

∥∥ f R i − f G i 

∥∥2 + ( 1 − λ1 ) 
∑ 

i =1 , ... ,n 

∥∥X i − ˆ X i 

∥∥2 
)

(5) 

here ˆ X i is the evaluated values of X i , and F G = { f G 
i 
} ∈ R 

n ×K 3 is 

he output of the third layer of the main network. The first term 

f the objective function is used to measure the association of the 

otential imaging and genetic data; the second term of the objec- 

ive function is used to measure the reconstruction error of the ge- 

etic data, and λ1 is a tunable coefficient that controls the tradeoff

etween association and reconstruction errors. However, the dis- 

ance between imaging and genetic data was large, and simple 

imilarity measurement between imaging and genetic representa- 

ions may be difficult for the extraction of potential genetic repre- 

entations. Two correlated views ( F R , F G ) of a target can be non- 

inearly mapped into a new space [ z( F R ) , z( F G ) ] on the basis of 

ome previous works ( Chen et al., 2020 ; Hinton et al., 2015 ), and

he distance between z( F R ) and z( F G ) can be shortened to increase 

imilarity between F R and F G . Therefore, the objective function can 
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Fig. 3. Network structure of the original diet network. (a) A classification network with a reconstruction term of the input. (b) and (c) are auxiliary networks, which are 

applied to predict the input layer parameters ( W e ) and reconstruction layer parameters ( W d ) of the classification network, respectively. 
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e formulated as follows: 

1 

2 n 

(
λ2 

∑ 

i =1 , ... ,n 

∥∥X i − ˆ X i 

∥∥2 + 

∑ 

j 
λ j 

3 

∑ 

i =1 , ... ,n 

∥∥z 
(

f R i 

)
− z 

(
f G i 

)∥∥2 
)

(6) 

here λ2 and λK 
3 

are the tunable coefficients that control the 

radeoff between reconstruction error and similarity loss. After 

he training of the network, the weights of the network were 

xed, and the potential genetic representation F G can be obtained. 

D and NC subjects were used to generate feature embeddings, 

hereas NC, MCI, and AD subjects are utilized to train the mod- 

fied diet network. The AD/NC dataset contained more distinct 

nowledge to discover AD-related biomarkers in the subsequent 

nalyses. Moreover, the whole dataset can alleviate the overfitting 

aused by high-dimensional SNP data. 

.5. Detection of AD potential biomarker 

A link between the imaging genetics and diagnostic results of 

D will be created to guide the detection of potential genetic 

iomarkers associated with AD. Herein, a fully connected network 

ith three layers was constructed to link the imaging genetics and 

iagnostic results of AD, where the input was the potential genetic 

epresentation F G obtained from the modified diet network; the 

rst and second fully connected layers had K 6 and K 7 units, re- 

pectively, followed by a ReLU activation; and the final layer was a 

igmoid layer, which could be used to calculate class-membership 

robabilities. The AD and NC subjects were utilized in this net- 

ork. Given that this study aimed to detect potential AD biomark- 

rs, the most special characteristics associated with AD were pri- 

arily explored. Moreover, the split pattern of the AD and NC sub- 

ects in the experiments should be the same in all three networks 

o avoid overfitting. In particular, the AD and NC subjects in the 

raining, validation, and testing sets in the GRU-based network and 

odified diet network should be in the network described in this 

ection. 

For the whole well-trained network, a strategy was introduced 

o identify the potential AD biomarkers by using contribution 

cores and to provide the importance of input features to net- 

ork outputs. Given that the networks in the second and third 

teps were multi-layer fully connected networks, the importance 

f an input feature can be calculated by using partial deriva- 

ives ( Ning et al., 2018 ). For the g th locus x (g) = { x i (g) } i =1 , ... ,n , the

erivative of the predicted probability ˜ L i of a subject i with AD 

as obtained with regard to x (g) , and the absolute value of the 

erivative among all subjects was averaged. Finally, the contribu- 

ion score of x (g) can be calculated as c(g) = E[ A ( 
∂ ̃ L i 

∂x (g) 
) ] , where

[ �] and A (�) represent the functions of average and absolute op- 
6 
rations, respectively. x (g) with a high contribution score indicates 

 close association with AD. Thus, these loci were potential AD- 

elated biomarkers. 

Moreover, the contribution of each image feature, such as ROI, 

n the MRI scans at each time point to the network outputs can be 

stimated by using the abovementioned strategy. For the r th image 

eature at the t th time point y t (r) = { y it (r) } i =1 , ... ,n , the derivative 

f the predicted probability ˜ L i of a subject i with AD with regard 

o y t (r) was obtained from the GRU-based network, and the abso- 

ute value of the derivative among all subjects was averaged. The 

ontribution score of y t (r) can be calculated as c t (r) = E[ A ( 
∂ ̃ L i 

∂ y t (r) 
) ] . 

inally, the contribution score of each image feature for all time 

oints was denoted as c(r) = E[ c t (r) ] . Therefore, the high contri- 

ution score of an image feature indicated its important role in 

he network and close association with AD. 

.6. Summary of the proposed method 

We have provided a pseudo-code in Algorithm 1 to elucidate 

he proposed method. 

. Experimental results 

The proposed method was evaluated on a set of simulated data 

nd a real AD dataset obtained from Alzheimer’s Disease Neu- 

oimaging Initiative (ADNI). Moreover, the proposed method was 

mplemented using Pytorch. Python environment was used for 

omputing on a computer with Ubuntu 16.04, Nvidia GTX GPU, 

nd 12G memory. The details of the experimental setup, such as 

ata partition (training/validation/testing sets) and hyperparameter 

urning, are provided in Section 3.2.2 . 

.1. Simulation study 

.1.1. Generation of simulated data 

We generated simulated data according to the following proce- 

ure. First, we randomly simulated two sparse matrices: M ∈ R 

p×1 

nd V ∈ R 

q ×t (i.e., disease-related SNPs or imaging data were set to 

onzero values, otherwise set to zero), where p and q are the fea- 

ure dimensions for SNP and imaging data with values of 10,0 0 0 

nd 100, respectively. The number of nonzero values for SNP and 

maging data was fixed to n p = 10 0 0 and n q = 10, respectively.

he number of time point t was set to 2. Then, we generated a la-

ent vector Z l ∈ R 

n l ×1 for the l th class, where l was set to 0 or 1;

 l is the subject number, which was set to 300. Based on Z l , we

an generate a set of longitudinal imaging data Y = { Y l t } l=0 , 1 ;t=1 , 2 , 

here Y l t ∼ N( Z l V t , I q ×q ) ; V t is the sparse vector for the t th time

oint, and I q ×q is an identity matrix. We generated SNP data X by 
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Step 1. Integration of Longitudinal Imaging Data with GRU. 

Inputs : Longitudinal imaging data Y ∈ R n ×N T ×N R , labels L ∈ R n ×1 , unit 

number of the GRU-based network { K j } j=1 , ... , 4 

Process : Initialize the parameters of the GRU-based network. 

repeat: 

1. Sample minibatch of { Y i , L i } n i =1 
from Y and L , respectively. 

2. Calculate H R 1 based on the Eqs. (1) –(4) 

3. for k = 2: 3 

Follow with the fully connected layer with K j units, output 

H R 
k 

← σ (W 

T 
k 

H R 
k −1 

+ b k ) . 

end 

4. Calculate classification probabilities ˜ L ← σ (W 

T 
4 H 

R 
3 + b 4 ) . 

5. Calculate cross-entropy-loss (L, ̃  L ) , update parameters. 

until Convergence 

Outputs : H R 2 , H 
R 
4 , and image representations F R ← H R 3 

Step 2. Association between Imaging and Genetic Data. 

Inputs : Genetic data X ∈ R n ×N G , H R 2 ∈ R n ×K 2 , H R 4 ∈ R n ×K 4 , feature embeddings of two 

auxiliary networks E ∈ R N G ×3 l , unit number of auxiliary network { K j } j=1 , 5 , and unit 

number of main network { K j } j=1 , ... , 4 

Process : Initialize the parameters of the modified diet network. 

repeat : 

1. Sample minibatch of { H 

R 
2 i 

, H 

R 
4 i 

, X i } n i =1 
from H R 2 , H 

R 
4 , and X , respectively. 

2. Input E to two auxiliary networks, output W e ← H A 1 
2 

and W d ← H A 2 
2 

, respectively. 

3. Calculate H G 1 ← σ ( X i W e ) as outputs of the first layer in the main network. 

4. for k = 2: 4 

Follow with the fully connected layer with K j units, output H G 
k 

← σ (W 

T 
k 

H G 
k −1 

+ b k ) 

end. 

5. Calculate the reconstruction error in the main network ˆ X i ← σ (H G 1 W 

T 
d 
) . 

6. Calculate total loss by using Eq. (6) , update parameters. 

Until Convergence 

Outputs : Potential genetic representations F G ← H G 3 Step 3(a). Establishing a link between imaging genetics and AD. 

Inputs : Genetic representations F G ∈ R n ×K 3 , labels L ∈ R n ×1 , and unit 

number of fully connected layers { K j } j=6 , 7 . 4 . 

Process : Initialize the parameters of the classification network 

repeat : 

1. Sample minibatch of { f G 
i 
, L i } n i =1 

from F G and L, respectively. 

2. for k = 2: 3 

Follow with the fully connected layers with K j units, output 

H C 
k 

← σ (W 

T 
k 

H C 
k −1 

+ b k ) # H 
C 
1 = f G 

i 

end 

3. Calculate classification probabilities ˜ L ← σ (W 

T 
4 H 

C 
3 + b 4 ) . 

4. Calculate cross-entropy-loss (L, ̃  L ) , update parameters. 

Until Convergence 

Outputs : Classification probabilities ˜ L ∈ R n ×1 

Step 3(b). Detection of AD Potential Genetic Biomarker. 

Inputs : Genetic data { X i } n i =1 
. 

Process : 

1. Combine our trained networks in Step 2 and Step 3(a). 

2. Input { X i } n i =1 
to our fully connected network to obtain predicted probabilities ˜ L . 

3. Calculate contribution scores c(g) = E[ A ( ∂ ̃ L i 
∂x (g) 

) ] 

Outputs : Contribution scores c(g) ∈ R N G ×1 

Table 2 

Causal biomarker rate (CBR) and classification accuracy (ACC) of SNPs and imaging data with 

different values in sparse matrices for linear and nonlinear associations, where [ V 1 , V 2 ]/ M 

represents nonzero values set in V 1 , V 2 , and M . 

[ V 1 , 

V 2 ]/ M 

Imaging 

data 

SNP 

Linear association Nonlinear association 

CBR [1, 2]/1 1.000 ± 0.000 0.775 ± 0.008 0.755 ± 0.003 

[3, 4]/3 1.000 ± 0.000 0.957 ± 0.093 0.925 ± 0.075 

[5, 6]/5 1.000 ± 0.000 0.997 ± 0.002 1.000 ± 0.000 

ACC [1, 2]/1 0.933 ± 0.018 0.747 ± 0.046 0.750 ± 0.030 

[3, 4]/3 0.963 ± 0.016 0.927 ± 0.027 0.920 ± 0.040 

[5, 6]/5 1.000 ± 0.000 0.977 ± 0.008 0.970 ± 0.012 
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sing a linear and a nonlinear association with Y to fully evaluate 

he performance of the proposed method. 

1 © Linear association: X 

l ∼ N( Z l M, I p×p ) , 

2 © Nonlinear association: X 

l ∼ N(Q( Z l ) M, I p×p ) , where Q(Z) = 

Z 

1 / 5 + Z 

1 / 4 + Z 

1 / 2 . 

Then, we applied a binomial distribution 

( 2 , logi t −1 ( X + logit ( ω) ) ) to convert X into categorical vari- 

bles at three levels (i.e., 0, 1, and 2) as introduced in Kim et al.

2020 ), where logit (ω) = log ( ω/ ( 1 − ω ) ) was the logit function 

nd ω was drawn from a uniform distribution U( 0 . 1 , 0 . 7 ) . 

.1.2. Results of simulated data 

We used the causal biomarker rate to assess the biomarker 

etection performance of the proposed method on the simulated 

ata, which was defined as the ratio of the number of detected 

NP (or imaging) biomarkers in top n p (or n q ) over the n p (or n q ).

oreover, we applied classification accuracy to evaluate the clas- 

ification performance of the proposed method on the simulated 

ata. Table 2 lists the causal biomarker rate and classification ac- 

uracy of SNPs and imaging data for linear and nonlinear associ- 

tions. Consequently, larger values in M or V led to higher classi- 

cation accuracy and causal biomarker rate of SNPs and imaging 

ata for either linear or nonlinear associations. All pre-set disease- 

elated imaging data were detected by using the proposed method 
7 
causal biomarker rate = 1). High causal biomarker rate (larger 

han 0.9) was achieved when large and median values were set 

n V (nonzero values in V were equal to 5 or 3). Although the 

lassification accuracy and causal biomarker rate decreased with a 

mall value in V (nonzero values in V were equal to 1), more than 

alf of the disease-related SNPs in 10 0 0 disease-related SNPs can 

e detected, indicating the effectiveness of the proposed method 

n the simulated data. Moreover, the performance of the proposed 

ethod on the linear and nonlinear associations between SNPs and 

mage data was similar, which indicated that the complex associ- 

tions between SNPs and image data can be handled properly by 

sing the proposed method. 

We fixed nonzero values in V 1 , V 2 , and M to 3, 4, and 3, re-

pectively, to investigate the effect of Step 3 on the performance of 

isease-related biomarker detection and generated SNP data X by 

sing the nonlinear association with Y . In this experiment, if Step 

 was removed, then the causal biomarker rate of SNP was only 

.773, whereas the causal biomarker rate of SNP was improved 

0.925) when Step 3 was included. The distance between the pre- 

iction layer of the GRU-based network and nonlinear map z( F G ) 

n the prediction space was measured in Step 2 to increase simi- 

arity between F R and F G for association analysis between imaging 

nd genetic data. The SNP biomarkers detected in this step were 

losely related to imaging data, which may or may not be associ- 
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Table 3 

Subject number at different time points. 

Time point Baseline visit 6 months 12 months 18 months 24 months 36 months 

Subject number 708 640 601 251 438 41 

a

n

b

t

3

3

o

(

t

I

i

o

T

a

c

t

t

m

o

a

d

p

(  

7

M

e

3

s

a

v

t  

t

T

u

a

s

p

b

(

t

(  

p

i

s

t  

q

a

t

p

t

v

w

t

R

e

u

i

t

(

a

f

s

9

(

i

t

5

3

u

m

s

p

c

n

l

l

e

r

p

M

p

p

p

2

A

t

w

s

t

t

t

d

r

O

f

t

p

r

i

1

b

t  

n

3  

c

6

l

f

ted with the disease. Hence, the link between the potential ge- 

etic representations F G and disease was weak, and a direct link 

etween them was required for disease-related biomarker detec- 

ion. 

.2. ADNI analysis 

.2.1. Materials 

In this study, the genetic data and longitudinal imaging data 

f the human brain were obtained from the database of ADNI 

 http://adni.loni.usc.edu/ ). ADNI was launched in 2003 by the Na- 

ional Institute on Aging (NIA), the National Institute of Biomedical 

maging and Bioengineering (NIBIB), the Food and Drug Admin- 

stration (FDA), private pharmaceutical companies and non-profit 

rganizations, as a $60 million, 5-year public–private partnership. 

he primary goal of ADNI has been to test whether serial MRI, PET 

nd other biological markers are useful in clinical trials of mild 

ognitive impairment (MCI) and early AD. Determination of sensi- 

ive and specific markers of very early AD progression is intended 

o aid researchers and clinicians to develop new treatments and 

onitor their effectiveness, as well as lessen the time and cost 

f clinical trials. ADNI subjects aged 55 to 90 from over 50 sites 

cross the US and Canada participated in the research and more 

etailed information is available at www.adni-info.org . 

T1-weighted MRI images were used in this study. The scanning 

arameters of 1.5T MRI images can be found in a previous study 

 Jack et al., 2008 ). A total of 708 (421 men and 287 women, age

5.61 ± 6.76 years at baseline visit) subjects with 164 AD, 346 

CI, and 198 NC provided by the ADNI1 dataset were used. For 

ach subject, the MRI scans at baseline visit, 6, 12, 18, 24, and 

6 months were used in this study when available. A longitudinal 

tudy usually covered a relatively long period in health sciences, 

nd some of the subjects almost always missed their scheduled 

isits or observation date. Therefore, the sequence of observation 

imes may vary across individuals ( van Erp et al., 2013 ). The de-

ails of the subject number at different time points are listed in 

able 3 . 

All MRI data were processed under the following steps: (a) 

sing of a nonparametric nonuniform bias correction for im- 

ge intensity inhomogeneity correction ( Sled et al., 1998 ); (b) 

kull stripping ( Wang et al., 2014 ) and warping a labeled tem- 

late to each skull-stripped image for the removal of the cere- 

ellum (aBEAT in version 1.0, http://www.nitrc.org/projects/abeat ); 

c) segmenting brain tissues into white matter (WM), gray mat- 

er (GM), and cerebrospinal fluid (CSF) by using the FAST method 

 Zhang et al., 2001 ); (d) registering all images into a common tem-

late ( Kabani, 1998 ) by using the 4D-HAMMER method proposed 

n a previous study ( Shen and Davatzikos, 2004 ) (HAMMER in ver- 

ion 1.0, https://www.nitrc.org/projects/hammer/ ); (e) generating 

he RAVENS maps ( Davatzikos et al., 2001 ), which can be used to

uantify the local volumetric group differences in the whole brain 

nd in each tissue type (WM, GM, CSF, and ventricles), by applying 

he deformation field; (f) automatic labeling of 93 ROIs on the tem- 

late ( Tzourio-Mazoyer et al., 2002 ); (f) projecting ROI labels from 

he template image to each MRI image; and (g) calculating the GM 

olume of each ROI in the labeled image and normalizing them 

ith the intracranial volume as the ROI-based feature representa- 

ion for each image. With these processing steps, a 93-dimensional 
8 
OI-based feature vector and RAVENS maps can be obtained, for 

ach time point for subsequent analyses. 

Human 610-quad Beadchip (Illumina, Inc., San Diego, CA) was 

sed to acquire the SNP data provided by the ADNI dataset. Qual- 

ty control was initially performed on the SNP data, which included 

he following steps: (i) gender check, (ii) population stratification, 

iii) sibling pair identification, (iv) call rate check for each subject 

nd each SNP marker, (v) marker removal according to minor allele 

requency, and (vi) Hardy–Weinberg equilibrium test. Then, SNP 

creening was conducted by using the following steps: (i) at least 

5% retention values, (ii) at least 95% minor allele frequency, and 

iii) Hardy–Weinberg equilibrium p > 10 −6 . Finally, the remain- 

ng missing genetic data were imputed as the modal value. After 

hese procedures, 708 subjects were retained, and each subject had 

01,584 SNPs during the subsequent analyses. 

.2.2. Experimental setup 

In the ADNI data analysis, longitudinal ROI-based features were 

sed as phenotypes to evaluate the performance of the proposed 

ethod with 708 subjects (164 AD, 346 MCI, and 198 NC). Each 

ubject had 501,584 SNPs and imaging data from various time 

oints, where each time point consisted of 93 ROIs. This study 

onsidered two types of hyperparameters; one was related to the 

etwork structure (e.g., layer number and node number in each 

ayer), and the other was associated with network learning (e.g., 

earning rate and batch size). Determining network hyperparam- 

ters was challenging because of a considerable amount of expe- 

ience, guesswork, assumptions, prior knowledge of data, and ex- 

eriments related to hyperparameter tuning ( Zhou et al., 2019b ). 

oreover, using the nested k -fold cross-validation to determine hy- 

erparameters was not feasible because the number of network 

arameters required to train a deep neural network for each hyper- 

arameter combination was expensive ( Lu et al., 2018 ; Zhou et al., 

019b ). Therefore, a hold-out method was used in the experiments. 

ll subjects were divided into 10 subsets with the same propor- 

ion of each class label, of which 8 were applied for training, 1 

as utilised for validation, and 1 was used for testing. The training 

et was used to train the networks; the validation set was utilised 

o guide the halting of network optimization and prevent overfit- 

ing, and the testing set was applied to evaluate the networks. This 

raining process was repeated five times, and the results for vali- 

ation and testing sets were achieved in each process. The final 

esult was obtained by averaging the five results of the testing set. 

ur search was limited to a small predefined range to compensate 

or the high computation cost of turning different hyperparame- 

er combinations. Moreover, the hyperparameters used in the pro- 

osed method are summarized in Table 4 . 

For the GRU-based network in the first step, the best hyperpa- 

ameter setting was searched via a grid search by using the follow- 

ng hyperparameter combinations: the learning rate ranged from 

0 −1 to 10 −6 with interval accumulate as multiples of 10 −1 ; the 

atch size ranged from 4 to 128 with interval accumulate as mul- 

iples of 2; the layer number was selected from 1, 2, 3, and 4; the

ode number of the first GRU layer was selected from 10 0, 20 0, 

0 0, 40 0, 50 0, 60 0, and 70 0; the node number of the second fully

onnected layer was selected from 50, 100, 200, 300, 400, 500, and 

00; the node number of the third fully connected layer was se- 

ected from 10, 30, 50, 100, and 200; and the node number of the 

ourth fully connected layer was selected from 5, 10, 30, 50, and 

http://adni.loni.usc.edu/
http://www.adni-info.org
http://www.nitrc.org/projects/abeat
https://www.nitrc.org/projects/hammer/
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Table 4 

Hyperparameters used in the proposed method, where “UN” represents the unit number in the Nth layer; the superscript j of λ j 
3 

denotes the 

unit number in the layer, where the potential genetic representations are mapped into, and “- -” indicates no value in the current parameter. 

GRU-based network Modified diet network Fully connected network for AD 

biomarker detection 
Main network auxiliary network 

U1 K 1 = 300 K 1 = 300 K 5 = 300 K 6 = 300 

U2 K 2 = 400 K 2 = 400 K 1 = 300 K 7 = 10 

U3 K 3 = 200 K 3 = 200 – K 4 = 1 

U4 K 4 = 1 K 4 = 1 – –

Learning rate 10 −4 10 −5 10 −4 

Batch size 64 64 8 

λ2 – 1 –

λ400 
3 – 10 –

λ1 
3 – 20 –

1

o

f

n

t

l

e

h

l

h

fi

h

t

S

c

l

d

m

r

t

m

o

t

o

w

a  

s

c

R

r

t

n

f

o  

f

t

w

h

w

t

t

c

e

t

c

t

s

m

r

t

s

n

s

i

t

p

i

t

l  

w

t  

4

l

a

h

fi

b

a

2

e

t

t

3

n

i

a

t

p

A

i

w

l  

Z

t

p

t

d

m

r

t

p

l

w

n

00. The node number of the latter layers was smaller than those 

f the front layers to maximize potentially integrated information 

rom longitudinal imaging data in the front layers, reduce the node 

umber in the latter layers for overfitting prevention, and narrow 

he semantic gap between the latter layers and the final sigmoid 

ayer for class-membership probability calculation. Finally, the av- 

rage value of the classification accuracy can be obtained, and the 

yperparameter combination with the highest accuracy was se- 

ected. 

For the modified diet network in the second step, the best 

yperparameter setting was searched by only using some prede- 

ned combinations because of the complex network structure and 

igh computation cost in this step compared with those in the 

wo other steps. In comparison with the grid search applied to 

tep 1, the hyperparameter combination in this step was diffi- 

ult to optimise. Moreover, the computational burden was further 

essened because of the super-high dimension ( N G ~10 6 ) of genetic 

ata. Some tricks were included rather than grid search to opti- 

ise our modified diet network. On the one hand, our experiments 

evealed that the auxiliary network preferred a simple architec- 

ure; otherwise, gradient explosion and heavy computation costs 

ay appear during network training. Moreover, the unit number 

f the last layer of the auxiliary network should be K 1 because 

he auxiliary network primarily aimed to learn the weights ( W e ) 

f the first layer of the main network. Therefore, the auxiliary net- 

ork with a number of fully connected layers no more than 3 

nd a unit number of each layer smaller than K 1 ( K 1 = 300) was

elected. On the other hand, some researchers ( Bengio and Le- 

un, 2007 ; Bianchini and Scarselli, 2014 ; Hanin, 2018 ; Hanin and 

olnick, 2018 ) pointed out empirically that deep and relatively nar- 

ow networks can be readily trained. Hence, the layer number of 

he main network should be determined first and then the unit 

umber of each layer. Moreover, the layer number was selected 

rom 1 to 3, and the unit number of each layer was selected from 

ne of these elements [10 0, 20 0, 30 0]. For the main network, the

ollowing strategy was used to design the spaces where the poten- 

ial genetic representations should be mapped into: first, the net- 

ork structure was constructed similar to the GRU-based network; 

owever, the GRU layer was replaced with a fully connected layer 

ith K 1 units to simplify the training process; considering that 

he prediction layer of the GRU-based network was mostly rela- 

ive to the class information, the potential genetic representations 

an be initially mapped into this layer. Second, the outputs were 

xtracted from each layer of the GRU-based network (except for 

he prediction layer), and a SVM classifier for each output and its 

ombination were subsequently trained to exploit the outputs with 

he most discriminative class information. Finally, the layer corre- 

ponding to the output with the outstanding classification perfor- 

ance was selected as the space where the potential genetic rep- 

esentations should be mapped into. After fixing the structure of 

e

9 
he main network, the assessment criteria in this step were de- 

igned as the total loss in Eq. (6) , and the hyperparameter combi- 

ation in the modified diet network with the lowest total loss was 

elected. Moreover, the learning rate and batch size were empir- 

cally set to 10 −5 and 128, respectively, in all the experiments in 

his step. 

For the fully connected network in the third step, the best hy- 

erparameter setting was searched via grid search similar to that 

n the first step from the following hyperparameter combinations: 

he learning rate ranged from 10 −1 to 10 −6 with interval accumu- 

ate as multiples of 10 −1 ; the batch size ranged from 4 to 128

ith interval accumulate as multiples of 2; the node number of 

he first fully connected layer was selected from 50, 10 0, 20 0, 30 0,

0 0, and 50 0; and the node number of the second fully connected 

ayer was selected from 5, 10, 30, 50, 100, and 200. Few layers 

nd nodes were used in this network because the features might 

ave achieved a high level (more semantic) after the training of the 

rst two networks. Finally, the average classification accuracy can 

e obtained, and the hyperparameter combination with the highest 

ccuracy was selected. 

In all training processes, the maximum number of epochs was 

0 0 0, and the maximum patience number of epochs was 100 for 

arly stopping. All of the five hold-out processes were trained with 

he same network architecture, hyperparameters, and stopping cri- 

eria. 

.2.3. Performance of the GRU-based network 

A GRU-based network was constructed to integrate longitudi- 

al imaging data. This network was used to bridge longitudinal 

maging data and AD-related labels for extracting the potential im- 

ge representation. Therefore, classification accuracy was utilised 

o evaluate the performance of the GRU-based network. In this ex- 

eriment, only AD and NC subjects were applied to perform the 

D/NC classification. The average classification accuracy of the test- 

ng sets was 0.935 ± 0.049 based on the five hold-out processes, 

hose accuracy was comparable to those of other previously pub- 

ished AD/NC classification results ( Liu et al., 2018b ; Lu et al., 2018 ;

hu et al., 2019 ). 

We used RNN and long short term memory (LSTM) to construct 

he network in the first step and evaluate the performance of the 

roposed GRU-based network. We also compared the classifica- 

ion accuracy, computational time, and parameter number of three 

ifferent RNN structure-based networks to evaluate their perfor- 

ance. For fair comparison, we designed and selected the hyperpa- 

ameters with optimal performance. Moreover, the computational 

ime and parameter number were calculated by using the same hy- 

erparameters, such as layer number, node number in each layer, 

earning rate, and batch size, in three RNN structure-based net- 

orks. The comparison results of different RNN structure-based 

etworks are shown in Table 5 . At 5% significant level, no differ- 

nce in classification accuracy was observed among these three 
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Table 5 

Classification accuracy (ACC), computational time 

(CT), and parameter number (PN) of different RNN 

structure-based networks. p -values of paired t -tests 

comparing the different networks with the GRU- 

based network are listed in the bottom two rows. 

ACC CT (s) PN (K) 

RNN 0.935 ± 0.061 46.1 319.0 

LSTM 0.930 ± 0.037 101.4 673.6 

GRU 0.935 ± 0.049 83.5 555.4 

GRU compared to other methods in ACC (p-values) 

RNN 0.996 

LSTM 0.880 

Fig. 4. Classification accuracy (ACC) of outputs of different layers in the GRU-based 

network obtained by using SVM for the AD/NC classification, where “K A + K B ” rep- 

resents the output concatenation of layers with K A and K B units. 
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Table 6 

Classification accuracy (ACC) of the proposed 

method with longitudinal imaging data (pro- 

posed) and the compared network with 

imaging data from a single time point (com- 

pared). 

proposed compared 

ACC 0.709 ± 0.044 0.633 ± 0.070 
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etworks. Computational time and parameter number of the GRU- 

ased network were lower than those of the LSTM-based network. 

he lowest computational time and parameter number were ob- 

ained by the RNN-based network. However, gradient vanishing of- 

en appeared in the RNN, which may result in instability of net- 

ork results ( Cho et al., 2014 ). Therefore, GRU was applied to bal-

nce the computational costs and result stability and provide the 

ffective performance of the whole proposed network. 

Moreover, the SVM was trained using outputs and their com- 

inations of each layer of the GRU-based network to determine 

he suitable layer for mapping the potential genetic representation. 

s shown in Fig. 4 , the output of the third layer with K 3 units

chieved the highest classification accuracy; thus, this layer was 

elected to generate the potential genetic representation. Apart 

rom the third layer, the outputs of the combination of the second 

nd third layers (i.e., K 2 + K 3 ) obtained a superior classification ac- 

uracy to those of the other layers. Hence, the second layer of the 

RU-based network can also provide rich class information, and 

 

G was mapped into the spaces of the next and last layers of F R to 

xtract potential genetic representations ( Fig. 2 b). 

.2.4. Effectiveness of using longitudinal imaging data 

The proposed method was compared with a network by using 

he imaging data from a single time point (baseline visit) as phe- 

otype inputs to investigate the effectiveness of using the longi- 

udinal imaging data. In the compared network, the network M 

or imaging data was composed of four layers as the proposed 

RU-based network, whereas the first hidden layer in M of the 

ompared network was a fully connected layer with K 1 units. The 

arameters of the modified diet network and the final classifica- 

ion network were the same as those of the proposed method in 
10 
he compared network. Moreover, the hyperparameters of the fi- 

al classification network were determined via grid search for fair 

omparison. Table 6 shows the classification accuracy of the pro- 

osed method with the longitudinal imaging data and the com- 

ared network with the imaging data from a single time point. 

able 6 also presents that the performance of the proposed method 

s better than that of the compared network, indicating the effec- 

iveness of using longitudinal imaging data in determining various 

ssociations between genetic and imaging data. 

.2.5. Effectiveness of the Modified diet network 

An ablation experiment was designed as follows to evaluate the 

ffectiveness of the modified diet network. First, the imaging in- 

ormation was ignored by setting λK 
4 

= 0 in Eq. (6) , and the loss

unction of the main network was modified to binary cross entropy 

BCE). Therefore, the whole network was returned to the origi- 

al diet network. Moreover, the weights of BCE and reconstruction 

osses were set to 20 and 1, respectively, to assess the effective- 

ess of using imaging data as endophenotypes to link genetic data 

nd diseases. Second, the two auxiliary networks were removed 

o investigate the effect of using auxiliary networks on the perfor- 

ance of the proposed method. Third, the reconstruction loss was 

iscarded by setting λ2 = 0 in Eq. (6) to evaluate the effectiveness 

f incorporating the reconstruction term of X on the performance 

f the proposed method. As shown in Fig. 5 (a) and (d), serious 

verfitting was observed in the absence of imaging information 

ompared with that of the proposed method, indicating that the 

otential information of the imaging data can guide the proposed 

etwork to exploit the latent genetic information. Overfitting was 

lso found in the absence of auxiliary networks ( Fig. 5 b). More- 

ver, the convergent time of the modified diet network without 

uxiliary networks or without reconstruction term was longer than 

hat of the proposed method ( Fig. 5 b–d). These results showed 

he effectiveness of incorporating the auxiliary networks and re- 

onstruction term on the main network training. 

The classification accuracy of these two measurement methods 

as calculated to compare the advantages of using similarity mea- 

urement in Eq. (6) with those in Eq. (5) . Using Eq. (5) , the struc-

ures of the GRU-based network and the two auxiliary networks 

ere the same as those of the proposed method. Moreover, three 

ayers were included in the main network with unit numbers of K 1 , 

 2 , and K 3 in each layer. However, only the outputs of the third 

ayer were mapped into the output space of the corresponding 

ayer in the GRU-based network for the extraction of potential ge- 

etic representations. λ1 was selected from 0.1 to 0.9 with interval 

ccumulate as multiples of 0.2 and fixed at 0.7 because the mini- 

um total loss in Eq. (5) was obtained. Moreover, the hyperparam- 

ters of the final classification network were determined via grid 

earch for fair comparison. As shown in Table 7 , the performance 

f the similarity measurement method used in Eq. (6) was better 

han that used in Eq. (5) , indicating that more class-related infor- 

ation can be learned by using Eq. (6) than by utilising Eq. (5) . 

In assessing the effect of different distances on the performance 

f the proposed method, Pearson correlation (PC) was used to re- 

lace mean square error (MSE) and measure the similarity be- 

ween imaging and genetic representations. The objective function 
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Fig. 5. Loss plots of (a) the original diet network, (b) modified diet network without auxiliary networks, (c) modified diet network without reconstruction loss, and (d) 

proposed modified diet network. 

Table 7 

Classification accuracy (ACC) of the pro- 

posed method using similarity measurement 

shown in Eq. ( 6 ; proposed) and Eq. ( 5 ; com- 

pared). 

proposed compared 

ACC 0.709 ± 0.044 0.600 ± 0.035 

Table 8 

Classification accuracy (ACC) of the proposed 

method using MSE and PC losses in Eq. (6) 

and Eq. (7) , respectively. 

MSE PC 

ACC 0.709 ± 0.044 0.698 ± 0.052 
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as designed as follows: 

1 

2 n 

(
λ2 

∑ 

i =1 , ... ,n 

∥∥X i − ˆ X i 

∥∥2 + 

∑ 

j 
λ j 

3 

(
1 − P 

(
f R i , f 

G 
i 

)))
(7) 

here P ( a , b ) is the PC coefficient between vectors a and b . Con-

idering that the PC coefficient cannot be calculated between two 

umerical values, the labels were represented as a form of one hot 

e.g., AD and NC labels are changed from 1 and 0 to 01 and 10, re-

pectively), and the final layer of the GRU-based network was sub- 

tituted with a softmax layer. λ2 , λ
400 
3 

, and λ2 
3 

were set to 1, 10, 

nd 20, respectively. The parameters of the modified diet network 

ith PC loss in Eq. (7) were the same as those with MSE in Eq. (6) .

oreover, the hyperparameters of the final classification network 

ere determined via grid search for fair comparison. Table 8 lists 

he classification accuracy of the proposed method with MSE and 

C losses. As shown in Table 8 , the classification accuracy of the 

roposed method with MSE loss was slightly higher than that of 

he proposed method with PC loss, which indicated that the effect 

f these two losses was similar to that of the proposed method. 
11 
.2.6. Biomarker detection 

We examined the genetic effect of each of the 501,584 SNPs 

n phenotypes and detected some potential biomarkers associ- 

ted with AD. The contribution scores c (k ) (g) and c (k ) 
t (r) of each 

f the five hold-out processes were calculated using the strategy 

n Section 2.5 by averaging the five contribution scores: c(g) = 

 c (k ) (g) } k =1 , ... , 5 and c t (r) = { c (k ) 
t (r) } k =1 , ... , 5 . 

Table 9 lists the top 30 SNPs with the highest scores in c(g) , 

ncluding the corresponding SNPs, chromosome (CHR) IDs, base 

air (BP) values, and genes. Consequently, the following genes 

ere detected: ZNF827 (CHR4) was related to the APoE4 noncar- 

iers of AD ( Jiang et al., 2015 ); MACROD2 (CHR 20) and CYP2B6 

CHR 19) were reported to be associated with AD ( Cacabelos, 2010 ; 

ohannim et al., 2012 ); PPM1H (CHR12) was linked to an in- 

reased AD risk ( Badhwar et al., 2017 ); DLG2 (CHR 11) was con- 

ected with increased AD-related neuroanatomical shape asym- 

etries ( Wachinger et al., 2018 ); ARID3B (CHR 15) was related 

o growth retardation and intellectual disability ( Donahue et al., 

017 ); RUNX1 (CHR 21) was associated with neuronal development 

 Logan et al., 2013 ); LINGO2 (CHR 9) was related to Parkinson’s dis- 

ase ( Su et al., 2012 ), and SKIV2L (CHR 6) was linked to brain de-

elopment ( Rosenfeld et al., 2020 ). 

Fig. 6 shows the top 10 ROIs in the MRI scans at different time 

oints as sorted by c t (r) . Among these ROIs, the hippocampus and 

mygdala were related to memory; the middle temporal gyrus was 

inked to language processes; and the precuneus was associated 

ith a high level of cognitive function, such as episodic memory 

etrieval, mental imagery strategies, and cue reactivity. The relia- 

ility of these findings was confirmed by their consistency with 

D prediction and AD imaging genetic studies ( Huang et al., 2015 ; 

ing et al., 2018 ; Zhou et al., 2019a ). As shown in Fig. 6 , the con-

ribution scores of top 10 ROIs in the MRI scans in 6 months were 

onstantly higher than those in other time points (except for the 

ateral ventricle at the right hemisphere), which indicated their 



M. Huang, H. Lai, Y. Yu et al. Medical Image Analysis 73 (2021) 102189 

Table 9 

ADNI ROI volume GWAS: top 30 selected SNPs associated with the 93 ROIs. “- -” indicates that the item does not to correspond to 

the genes. 

SNP CHR BP Gene SNP CHR BP Gene 

1 rs3184088 15 74,890,354 ARID3B 16 rs10506635 12 71,898,821 LGR5 

2 rs1472866 4 146,849,715 ZNF827 17 rs11178812 12 71,864,192 LGR5 

3 rs2059409 2 218,720,042 TNS1 18 rs3958102 12 83,481,871 TMTC2 

4 rs10940415 5 53,985,003 LOC102467080 19 rs1517820 12 83,488,072 TMTC2 

5 rs200762 20 15,609,236 MACROD2 20 rs771972 12 63,275,017 PPM1H 

6 rs2834675 21 36,292,500 RUNX1 21 rs34555781 6 31,925,697 SKIV2L 

7 rs2072164 7 143,657,427 OR2F1 22 rs548927 16 3,257,868 –

8 rs17128435 8 13,147,657 DLC1 23 rs479067 1 27,375,997 LOC101928391 

9 rs10503446 8 13,147,702 DLC1 24 rs9327478 5 127,850,129 FBN2 

10 rs7852959 9 28,471,251 LINGO2 25 rs12807906 11 84,064,102 DLG2 

11 rs2291287 19 41,522,451 CYP2B6 26 rs7115655 11 132,024,460 NTM 

12 rs1190053 6 105,745188 PREP 27 rs16880442 5 52,185,695 ITGA1 

13 rs11008540 10 31,894,818 – 28 rs1962230 4 54,021,591 SCFD2 

14 rs728581 14 52,258,905 LOC101927598 29 rs7128766 11 20,908,913 NELL1 

15 rs12504009 4 125,553,855 – 30 rs11694726 2 1,460,220 TPO 

Fig. 6. Contribution scores of top 10 ROIs in the MRI scans at different time points. 
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rucial changes. Their contribution scores in 12 months were also 

igher than those at baseline visit. Therefore, important informa- 

ion on AD progression may be lost when imaging data were used 

t a single time point (e.g., baseline visit). Moreover, AD-related 

ariations as discovered by longitudinal imaging data application 

an be determined by imaging genetics when the associations be- 

ween imaging and genetic data were analysed. Hence, longitudi- 

al imaging data may be used in determining the effects of genetic 

ata on disease progression trajectory and enhancing the detection 

ower of potential biomarkers. 

AD/NC classification was performed on the top SNPs (or ROIs) 

y using a SVM classifier to investigate the associations between 

op SNPs (or ROIs) and diagnosis. Only ROIs obtained from baseline 

isit were used for AD/NC classification. Fig. 7 (a) and (b) show the 

lassification results with different number of top ROIs and SNPs, 

espectively. For ROI ( Fig. 7 a), the highest classification accuracy 

as 0.897 by using the top 25 ROIs from baseline visit, which 

as higher than that by using all 93 ROIs from baseline visit. For 

NP ( Fig. 7 b), the classification accuracy of using different number 

f top SNPs was higher than that of using the total super-high- 

imensional SNPs (~10 6 ). Moreover, the highest classification ac- 

uracy of SNP was 0.851 by using the top 500 SNPs. The classifica- 

ion accuracy outperformed several relevant methods ( Huang et al., 

019b ; Ning et al., 2018 ; Zhou et al., 2019b ), which involved a set

b

12 
f preselected SNPs as predictors to classify subjects into AD and 

C. These results indicated that the proposed method could detect 

ome AD-related SNP/ROI biomarkers. 

.2.7. Detection of AD-related pairs of ROI and SNP 

The associations between imaging and genetic data were ex- 

loited by measuring the similarity between imaging and genetic 

epresentations ( F R and F G ), as described in Step 2 of the proposed 

ethod. For a given unit p in one layer of a multi-layer fully con- 

ected network, the derivative of p of a subject i with AD was ob- 

ained with regard to an input ( x (g) or y t (r) ) based on the chain

ule for derivatives. For instance, the derivatives of units in the 

econd layer (FC2 in Fig. 2 ) with regard to the inputs can be ob-

ained for imaging and genetic data, denoted as h 2 (g) = 

∂H G 
2 

∂x (g) 
and 

 2 (r) = 

∂H R 
2 

∂ y t (r) 
, respectively, where H 

G 
2 

and H 

R 
2 represent the outputs 

f FC2 for the GRU-based network and modified diet network, re- 

pectively: h 2 (g) ∈ R 

1 ×K 2 , and h 2 (r) ∈ R 

1 ×K 2 . Therefore, the asso- 

iation score between the g th SNP and the r th ROI in the sec-

nd layer can be achieved by c 2 (g, r) = E[ A ( h 2 (g) × h 2 (r) T ) ] . The 

erivatives of units in the fourth layer (prediction layer in Fig. 2 ) 

ith regard to the inputs can also be calculated, and the associa- 

ion score between the g th SNP and r th ROI in the fourth layer can

e achieved by c (g, r) = E[ A ( h (g) × h (r) T ) ] . Considering that the 
4 4 4 
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Fig. 7. Classification accuracy of (a) top ROIs and (b) top SNPs. 

Table 10 

Top 16 SNP-ROI pairs with the largest association scores, where amyg.R/L and hiopp.R/L are abbreviations of amygdala 

right/left and hippocampal formation right/left, respectively. 

SNP(Gene) Mean ± std 

rs3184088 

(ARID3B) 

rs2059409 

(TNS1) 

rs2072164 

(OR2F1) 

rs7852959 

(LINGO2) 

ROI amyg.R 0.999 0.997 0.988 0.973 0.492 ±
0.240 

amyg.L 0.918 0.917 0.908 0.896 0.449 ±
0.223 

hiopp.L 0.889 0.886 0.880 0.862 0.438 ±
0.213 

hiopp.R 0.812 0.810 0.805 0.790 0.403 ±
0.198 

Mean ± std 0.417 ±
0.166 

0.415 ±
0.166 

0.412 ±
0.164 

0.406 ±
0.161 
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istance was calculated between the imaging and genetic outputs 

f the second and fourth layers ( Eq. (6) ), respectively, the associa- 

ion scores between imaging and genetic data can be obtained by 

(g, r) = ( c 2 (g, r) + c 4 (g, r) ) / 2 . 

We first selected the top 10 SNPs and ROIs with the highest 

ontribution scores calculated by using the strategy proposed in 

ection 2.5 to illustrate the complex associations between SNPs 

nd ROIs. Then, we calculated the association scores by using the 

bove-mentioned strategy to obtain the associations between the 

op 10 SNPs and top 10 ROIs. Table 10 shows the top 16 SNP-ROI

airs with the largest association scores. As shown in Table 10 , the 

ssociation scores were similar among different SNPs for a ROI, 

hich may result from the weak and average effects of the top 

NPs. However, the association scores of the top SNPs were re- 

arkably larger than the mean association scores of total SNPs 

~10 6 ). The same results were found in the association scores of 

he top ROIs compared with the mean association scores of total 

OIs. Therefore, the important ROI-SNP pairs can be detected by 

sing the proposed method. Among these ROI-SNP pairs, the hip- 

ocampus and amygdala were related to memory; ARID3B (CHR 

5) was related to growth retardation and intellectual disability 

 Donahue et al., 2017 ); LINGO2 (CHR 9) was related to Parkinson’s 

isease, and their associations need further investigation and veri- 

cation ( Su et al., 2012 ). 

.2.8. Effect of using RAVENS maps as inputs 

Whole-brain images (RAVENS maps) were used as inputs of the 

roposed method to investigate the effect of different inputs on 

he performance of the proposed method, and a three-step train- 

ng strategy was used to extract the potentially integrated informa- 
13 
ion of the longitudinal imaging data for image representation ( F R ). 

or the first step, a 3D AD/NC classification framework was con- 

tructed for the imaging data, and its structure is listed in Table 11 .

s shown in Table 11 , the 3D classification framework, namely, 

esNet3D, was extended from 2D ResNet50 ( He et al., 2016 ) (i.e., 

ll convolution and pooling layers were changed from 2D to 3D), 

nd a fully connected layer with 128 units (FC128) was added be- 

ind the average pooling layer. With the well-trained ResNet3D, 

he feature extracted from the output of FC128 was used as im- 

ge measurement ( Y it ∈ R 

128 ×1 ). In this step, all brain images of AD 

nd NC subjects with different time points in the training set were 

sed to train the network. For the second step, the parameters in 

he ResNet3D were fixed, and Y it extracted from ResNet3D was ap- 

lied as input to train the proposed GRU-based network. For the 

hird step, the ResNet3D without the sigmoid layer was concate- 

ated with the GRU-based network, and an end-to-end network 

ne-tuning was performed to optimise the whole network for ex- 

raction of image representations. For the whole network (includ- 

ng the ResNet3D and GRU-based network), the average classifica- 

ion accuracy of the whole-brain images in the testing sets was 

.930 ± 0.041 based on the five hold-out processes, whose accu- 

acy was similar to that of using ROIs as inputs, and was compa- 

able to those of other previously published AD/NC classification 

esults ( Liu et al., 2018b ; Lu et al., 2018 ; Zhu et al., 2019 ). 

With the well-trained network for the whole-brain images, 

he image representations can be extracted, and the following 

wo steps, including association analysis between imaging and ge- 

etic data and biomarker detection, can be performed. Finally, 

he AD/NC classification accuracy of the genetic representation ex- 
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Table 11 

Structures of the ResNet3D for extraction of image measurements. The symbol [ A ] × D denotes that 

block A is repeated for D times. “p w × q conv” represents the sequence Conv-BN layer with convolu- 

tional kernel size of p w and q features. “FC( t )” corresponds to a fully connected layer with t units. “–”

denotes no structure in the current stage. 

Output size ResNet3D 

Input 97 3 × 1 –

Convolution 91 3 × 64 7 3 × 64 conv, ReLU, stride 1 

Pooling1 46 3 × 64 3 3 × 64 Max Pooling, stride 2 

ResBlock1 23 3 × 256 [(1 3 × 64 conv), (3 3 × 64 conv), (1 3 × 256 conv), ReLU] × 3 

ResBlock2 12 3 × 512 [(1 3 × 128 conv), (3 3 × 128 conv), (1 3 × 512 conv), ReLU] × 4 

ResBlock3 6 3 × 1024 [(1 3 × 256 conv), (3 3 × 256 conv), (1 3 × 1024 conv), ReLU] × 6 

ResBlock4 3 3 × 2048 [(1 3 × 512 conv), (3 3 × 512 conv), (1 3 × 2048 conv), ReLU] × 3 

Pooling2 1 3 × 2048 3 3 × 2048 Average Pooling, stride 1 

FC 128 FC(128) 

Fig. 8. Selected slices of the contribution scores of voxels calculated in the proposed network for extraction of image representation. 

Table 12 

ADNI whole-brain image GWAS: top 30 selected SNPs associated with the whole-brain images. 

SNP CHR BP Gene SNP CHR BP Gene 

1 rs6986134 8 106,672,991 ZFPM2 16 rs925717 12 79,379,050 SYT1 

2 rs4970843 1 109,887,191 SORT1 17 rs12597935 16 73,147,484 ZFHX3 

3 rs4837062 9 120,031,365 ASTN2 18 rs7179325 15 101,066,053 CERS3 

4 rs4943302 13 35,986,558 NBEA 19 rs3738773 1 110,048,527 AMIGO1 

5 rs2262425 2 238,984,129 SCLY 20 rs7337025 13 87,481,267 LOC105370300 

6 rs2264132 2 238,994,676 SCLY 21 rs17246639 11 122,279,782 MIR100HG 

7 rs821480 2 238,972,827 SCLY 22 rs2076954 15 33,987,341 RYR3 

8 rs745611 18 45,909,040 ZBTB7C 23 rs3817043 10 1,256,632 ADARB2 

9 rs1847325 15 101,067,542 CERS3 24 rs1442330 8 106,673,800 ZFPM2 

10 rs9395285 6 47,554,177 CD2AP 25 rs12919255 16 83,535,543 CDH13 

11 rs6507842 18 45,887,992 ZBTB7C 26 rs10105946 8 106,664,873 ZFPM2 

12 rs972731 15 100,997,743 CERS3 27 rs1489310 16 83511242 CDH13 

13 rs8097442 18 45,885,036 ZBTB7C 28 rs2306907 16 83,520,078 CDH13 

14 rs11247214 15 101,055,938 CERS3 29 rs6030129 20 40,946,744 PTPRT 

15 rs989891 21 197,08347 TMPRSS15 30 rs4149580 12 6,446,990 TNFRSF1A 
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racted by the modified diet network was 0.703. The contribution 

core of each voxel was calculated by using Grad-CAM ++ to illus- 

rate the contribution of each voxel in the whole-brain images at 

ll time points to the network outputs ( Fig. 8 ) ( Chattopadhay et al.,

018 ), and is shown in Fig. 8 . Moreover, Table 12 lists the top

0 SNPs with the highest contribution scores. As shown in Fig. 8 , 

everal voxels in major ROIs including the amygdala, hippocam- 

us, superior temporal gyrus, middle temporal gyrus, putamen, 

nd thalamus, have previously demonstrated their associations 

ith AD ( Huang et al., 2021 ; Wen et al., 2020 ). Among the

op 30 SNPs listed in Table 12 , the following genes were de- 

ected: SORT1 (CHR 1) was related to the risk of developing AD 

 Andersson et al., 2016 ); CD2AP (CHR 6) was associated with high 

isk of AD ( Tao et al., 2019 ); RYR3 (CHR 15), CDH13 (CHR 16),

nd TNFRSF1A (CHR12) were related to AD ( Bruno et al., 2012 ; 

iu et al., 2018a ; Shang et al., 2015 ); ZFHX3 (CHR 16) was re-

ated to dementia ( Rollo et al., 2015 ); ASTN2 (CHR 9) was con-

ected to the development of the cortical regions of the brain 

 Wilson et al., 2010 ); ZBTB7C (CHR 18) was related to mental re-

ardation ( Gilling et al., 2011 ); TMPRSS15 (CHR 21) was implicated 

n neuronal function ( Morey et al., 2017 ); AMIGO1 (CHR 1) was as-
14 
ociated with brain development ( Zhao et al., 2011 ); ADARB2 (CHR 

0) was linked to the changes of temporal lobe volume extracted 

rom AD patients ( Kohannim et al., 2012 ); PTPRT had a positive ef- 

ect on dendritic arborization and synapse formation in cultured 

ippocampal neurons ( Thomas et al., 2013 ); ZFPM2 (CHR 8) was 

ssociated with schizophrenia ( Greenbaum et al., 2012 ), and NBEA 

CHR 13) was related to autism ( Castermans et al., 2010 ). 

. Discussion 

In this study, a novel dGDN-GWAS method is introduced to 

etect potential AD biomarkers. A GRU-based network is applied 

ithout imputing incomplete longitudinal imaging data to inte- 

rate longitudinal data with variable lengths and extract an image 

epresentation. Considering the high parameters produced by the 

enetic network that takes super-high-dimensional genetic data 

~10 6 ) as input, a modified diet network that can considerably re- 

uce the number of parameters in the genetic network is proposed 

o perform the GWAS between the genetic data and image rep- 

esentation. Consequently, the genetic representation can be ex- 

racted for the following analyses. Finally, a link between the ge- 
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etic representation and AD is created for potential AD biomarker 

etection. The proposed method is also evaluated on a set of sim- 

lated data and 708 subjects obtained from a real AD dataset. 

ased on the simulated experiments, the results show that the 

roposed method can accurately detect relevant biomarkers and 

chieve high classification accuracy. Based on the real AD data 

nalysis, the results show that the proposed method has high ac- 

uracy in AD/NC classification, and this method can detect some 

D-related biomarkers. Therefore, the proposed method is an im- 

ortant tool for the prediction, diagnosis, and monitoring of AD. 

The proposed method primarily consists of three steps, where 

he first two steps are used to conduct GWAS. In the first step, 

he potentially integrated information of the longitudinal imaging 

ata for image representation F R is extracted by using a GRU-based 

etwork. F R extraction can be simply formulated as F R = ϕ(Y ) , 

here ϕ(�) is a nonlinear function. In the second step, the mod- 

fied diet network is used to extract the potential genetic infor- 

ation F G and examine the association between the imaging and 

enetic data. Similar to F R extraction, F G extraction can be formu- 

ated as F G = φ(X ) , where φ(�) is considered as a nonlinear func- 

ion. Therefore, the association between the imaging and genetic 

ata is nonlinear, and it can be represented as ϕ(Y ) = φ(X ) . From

his association formulation between the imaging and genetic data, 

e can observe that the correlations among imaging data, the cor- 

elations among genetic data, and the association between imag- 

ng and genetic data are considered by using the proposed method. 

herefore, the proposed method performs GWAS between longitu- 

inal imaging and super-high-dimensional genetic data in a multi- 

ariate way. 

Longitudinal imaging data are important for discovering the 

ffect of genetic data on the trajectory of disease progres- 

ion and enhancing the detection power of potential biomarkers. 

able 6 shows that the classification accuracy of the proposed 

ethod with longitudinal imaging data is higher than that of a 

etwork with imaging data from a single time point (paired t -test 

 = 0.031). As shown in Table 6 , the AD/NC classification accu- 

acy with genetic data as inputs is lower than that with imag- 

ng data as inputs (0.709 vs. 0.935), which may result from the 

uper-high-dimensional features (approximately 10 6 ) and weak ge- 

etic effects of the genetic data. In some previously published 

ethods ( Ning et al., 2018 ; Zhang et al., 2014 ), which also in-

olve SNP as a predictor in the AD/NC classification, their AD/NC 

lassification accuracy is below 0.7 with a set of AD-related SNPs 

SNP number is less than 60 0 0). However, under the guidance of 

he GRU-based network, the AD/NC classification accuracy of the 

uper-high-dimensional genetic data can be improved using the 

roposed method. More AD-related SNP biomarkers may be de- 

ected by using the proposed method compared with other studies 

ith a small set of SNPs. Moreover, AD/NC classification is per- 

ormed on the top SNPs (or ROIs) by using a SVM classifier to 

nvestigate the associations between top SNPs (or ROIs) and di- 

gnosis ( Fig. 7 ). As shown in Fig. 7 , the classification accuracy of

op SNPs (or ROIs) is higher than that of all SNPs (or all ROIs),

nd it outperforms some relevant methods ( Huang et al., 2019b ; 

ing et al., 2018 ; Zhou et al., 2019b ), which indicates that the pro-

osed method can detect some AD-related SNP/ROI biomarkers. As 

hown in Fig. 6 , the contribution scores of top 10 ROIs in the MRI

cans in 6 and 12 months are higher than those in the baseline 

isit. Therefore, if imaging data in the baseline visit are only used 

n most previous studies, then important information on AD pro- 

ression may be lost. Several studies have also incorporated longi- 

udinal data in analysing the associations between imaging and ge- 

etic data and demonstrated an improved performance ( Du et al., 

019 ; Hao et al., 2017 ; Marchetti-Bowick et al., 2016b ). However, 

he number of time points of longitudinal data should be the same 

n most of these studies, but this requirement is difficult to achieve 
15 
n a longitudinal study with a relatively long period (such as AD in 

his study). 

In this study, a modified diet network is incorporated into the 

roposed network to reduce the network parameters for extracting 

otential genetic information and effectively conducting GWAS. In 

he modified diet network, the per-class histograms of the genetic 

ata in the training set are used as feature embeddings, which may 

ncorporate class information to guide the discovery of potential 

nformation in the genetic data. In addition to an association loss 

etween the imaging and genetic data in traditional GWAS, a re- 

onstruction loss of genetic data is added to the objective function 

f the modified diet network. As shown in Fig. 5 , incorporating 

econstruction term can improve the convergence of the training 

f the network possibly because some important information of 

he genetic data is reserved using the reconstruction term. Thus, 

he potential information of the genetic data can be extracted for 

he following analyses. In comparison with the proposed method, 

he original diet network suffers from serious overfitting, indicat- 

ng that extracting potential AD-related information from high- 

imensional SNP data is difficult without imaging data. Moreover, 

 comparative experiment is performed by using Eqs. (6) and (5) to 

valuate different similarity measurements on the performance of 

he AD/NC classification. As shown in Table 7 , the classification ac- 

uracy obtained by using Eq. (6) is superior to that calculated by 

sing Eq. (5) , indicating that the distance between imaging and ge- 

etic representations may be shortened via the similarity measure- 

ent in Eq. (6) for the extraction of potential genetic information. 

C is applied to replace MSE in Eq. (6) to measure the similar- 

ty between imaging and genetic representations and evaluate the 

erformance of using different distances on the proposed method. 

s shown in Table 8 , the classification accuracy of the proposed 

ethod with MSE or PC loss is similar (pair t -test p = 0.74), sug-

esting that the effects of using different distance on the proposed 

ethod may be weaker than other factors, such as using longitu- 

inal imaging data and using similarity measurement ( Eq. (6) ). 

Apart from using longitudinal ROIs as inputs of the proposed 

ethod, whole-brain images (RAVENS maps) are also applied to 

ssess the effect of different inputs on the performance of the 

roposed method. In the biomarker detection experiments, amyg- 

ala, hippocampus, and middle temporal gyrus are detected by us- 

ng ROIs or whole-brain images. Moreover, some different brain 

egions are detected by using ROIs (such as the lateral ventri- 

le, uncus, and precuneus) and whole-brain images (such as the 

uperior temporal gyrus, putamen, and thalamus). For genetic 

iomarker detection, several AD-related genes, including ZNF827 

CHR4), MACROD2 (CHR 20), CYP2B6 (CHR 19), PPM1H (CHR12), 

nd DLG2 (CHR 11), are found by using ROIs as inputs, whereas 

ome other AD-related genes, including SORT1 (CHR 1), CD2AP 

CHR 6), RYR3 (CHR 15), CDH13 (CHR 16), and TNFRSF1A (CHR12), 

re identified by using whole-brain images as inputs, suggesting 

hat different image measurements may provide different informa- 

ion to guide the association analysis between imaging and genetic 

ata and lead to different results of biomarker detection. More- 

ver, several SNPs with potential risks are discovered by using ROIs 

nd whole-brain images as inputs, but their effect on AD has not 

een revealed in literature. Therefore, these genes related to AD 

rogression should be further investigated. Such findings may im- 

rove the discovery of new AD-related genetic biomarkers and the 

arly prediction and treatment of this disease. Although different 

op 30 SNPs are detected, respectively, a similar phenomenon is 

ound by using ROIs and whole-brain images as inputs ( Tables 9 

nd 12 ). Among the top 30 SNPs listed in Table 9 , rs17128435 and

s10503446 belong to the DLC1 gene, rs1050 6 635 and rs11178812 

elong to the LGR5 gene, and rs3958102 and rs1517820 belong 

o the TMTC2 gene. Moreover, among the top 30 SNPs listed in 

able 12 , rs6986134, rs1442330, and rs10105946 belong to the 
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FPM2 gene; rs2262425, rs2264132, and rs821480 belong to the 

CLY gene; rs745611, rs6507842, and rs8097442 belong to the 

BTB7C gene; rs972731, rs11247214, and rs7179325 belong to the 

ERS3 gene, and rs12919255, rs1489310, and rs2306907 belong 

o the CDH13 gene. This result may be attributed to the correla- 

ions among adjacent SNPs, which are considered in the proposed 

ethod. Thus, adjacent SNPs, which are associated with AD, can be 

etected using the proposed method. 

Several issues should be addressed in our future research. First, 

he proposed deep-learning network is separated into three parts 

nd trained step by step, thereby achieving a suboptimal outcome. 

herefore, an end-to-end framework and an alternative optimal 

ethod should be incorporated into the proposed method. Second, 

emarkable results may be achieved when different image pheno- 

ypes are combined with our research because various character- 

stics of image phenotypes can be obtained from different neu- 

oimaging modalities (e.g., functional MRI, PET, and diffusion ten- 

or imaging). 
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